Sharp estimates for conditionally centred moments and for compact operators on L^{p} spaces

Eugene Shargorodsky* and Teo Sharia**

* King's College London and Technische Universität Dresden
** Royal Holloway, University of London

Prologue: motivation from Analysis

Question from the theory of Hardy spaces / Toeplitz operators: what is the norm of the backward shift operator?

Equivalently,
what is the norm of the operator

$$
f \longmapsto f-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) d \theta
$$

on the Hardy space $H^{p}(\mathbb{T})$? Still unknown for $p \neq 2$!

What is the norm of the operator

$$
f \longmapsto f-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) d \theta
$$

on $L^{p}(\mathbb{T})$?
The (not widely!) known answer has led to the research presented here.

Estimates for centred moments

Notation:

($\Omega, \mathcal{F}, \mathbf{P})$ - probability space
$\xi-$ (real valued) random variable (r.v.)
$\mathbf{E} \xi:=\int_{\Omega} \xi(\omega) d \mathbf{P}(\omega)-$ expectation of ξ,
We will always assume that Ω consists of more than one element and that \mathcal{F} is nontrivial, i.e. $\mathcal{F} \neq\{\emptyset, \Omega\}$.

Question:

What is the optimal constant $c_{p}=c_{p}(\Omega, \mathcal{F}, \mathbf{P})$ in the following estimate?

$$
\begin{aligned}
& \|\xi-\mathbf{E} \xi\|_{p}=\left(\mathbf{E}|\xi-\mathbf{E} \xi|^{p}\right)^{1 / p} \leq c_{p}\left(\mathbf{E}|\xi|^{p}\right)^{1 / p}=c_{p}\|\xi\|_{p}, \quad 1 \leq p<\infty \\
& \|\xi-\mathbf{E} \xi\|_{\infty}=\operatorname{ess} \sup _{\omega \in \Omega}|\xi(\omega)-\mathbf{E} \xi| \leq \boldsymbol{c}_{\infty} \text { ess } \sup _{\omega \in \Omega}|\xi(\omega)|=c_{\infty}\|\xi\|_{\infty}
\end{aligned}
$$

Preliminary analysis

Textbook case: $c_{2}=1$. Indeed,

$$
\mathbf{E}|\xi-\mathbf{E} \xi|^{2}=\mathbf{E}(\xi-\mathbf{E} \xi)^{2}=\mathbf{E} \xi^{2}-(\mathbf{E} \xi)^{2} \leq \mathbf{E} \xi^{2}
$$

If ξ is not a constant r.v., then $\eta:=\xi-\mathbf{E} \xi \neq 0$, but $\mathbf{E} \eta=0$. Hence $\|\eta-\mathbf{E} \eta\|_{p}=\|\eta\|_{p}$, and $c_{p} \geq 1$ for all $p \in[1, \infty]$.

Hölder's
Hence

$$
\|\xi-\mathbf{E} \xi\|_{p} \leq\|\xi\|_{p}+\|\mathbf{E} \xi\|_{p}=\|\xi\|_{p}+|\mathbf{E} \xi| \leq 2\|\xi\|_{p}
$$

So, $c_{p} \leq 2$ for all $p \in[1, \infty]$.

Suppose that for every $\alpha \in(0,1)$, there exists $A \in \mathcal{F}$ such that $\mathbf{P}(A)=\alpha$.
Let $\xi:=\mathbb{1}_{A}$. Then $\mathbf{P}(\xi=1)=\alpha, \mathbf{P}(\xi=0)=1-\alpha$,
$\mathbf{E}|\xi|=\mathbf{E} \xi=\alpha, \mathbf{E}|\xi-\mathbf{E} \xi|=2 \alpha(1-\alpha)$, and

$$
\frac{\|\xi-\mathbf{E} \xi\|_{1}}{\|\xi\|_{1}}=2(1-\alpha) .
$$

Sending α to 0 , one concludes that $c_{1}=2$.
Similarly, if $\xi:=\mathbb{1}_{A}-\mathbb{1}_{\Omega \backslash A}$, then
$\mathbf{P}(\xi=1)=\alpha, \mathbf{P}(\xi=-1)=1-\alpha$,
$\mathbf{E} \xi=2 \alpha-1,\|\xi\|_{\infty}=1$, and $\|\xi-\mathbf{E} \xi\|_{\infty}=\max \{2 \alpha, 2(1-\alpha)\}$. Sending α to 1 or to 0 , one concludes that $c_{\infty}=2$.

$$
c_{1}=2=c_{\infty}, \quad c_{2}=1, \quad 1 \leq c_{p} \leq 2 \quad \text { for all } \quad p \in(1, \infty)
$$

where the first equality holds if there are $A \in \mathcal{F}$ with arbitrarily small positive $\mathbf{P}(A)$, e.g., if \mathbf{P} is nonatomic.
c_{p} is the norm of the operator $\mathbf{C}: L^{p}(\Omega, \mathbf{P}) \rightarrow L^{p}(\Omega, \mathbf{P})$,

$$
\xi \mapsto \mathbf{C} \xi:=\xi-\mathbf{E} \xi
$$

Applying the Riesz-Thorin interpolation theorem to this operator, one deduces from the above equalities that

$$
c_{p} \leq 2^{\left|1-\frac{2}{p}\right|}, \quad 1<p<\infty
$$

(S. Rolewicz, 1990).

Let $(\Omega, \mathcal{F}, \mathbf{P})=([0,1], \mathcal{L}, \lambda)$, where λ is the standard Lebesgue measure on $[0,1]$ and \mathcal{L} is the σ-algebra of Lebesgue measurable subsets of $[0,1]$. (Equivalently, one can assume that Ω is a complete separable metric space, $\mathcal{F}=\mathcal{B}$ is the Borel σ-algebra of Ω, and \mathbf{P} is nonatomic.)
C. Franchetti (1990):

$$
c_{p}=c_{p}([0,1], \mathcal{L}, \lambda)=\max _{0<\alpha<1} C_{p}(\alpha)=: C_{p} \quad \text { for all } \quad 1<p<\infty
$$

where

$$
C_{p}(\alpha):=\left(\alpha^{p-1}+(1-\alpha)^{p-1}\right)^{\frac{1}{p}}\left(\alpha^{\frac{1}{p-1}}+(1-\alpha)^{\frac{1}{p-1}}\right)^{1-\frac{1}{p}}
$$

$$
\begin{aligned}
& C_{1}:=\lim _{p \rightarrow 1+0} C_{p}=2=c_{1}, \quad C_{\infty}:=\lim _{p \rightarrow \infty} C_{p}=2=c_{\infty}, \\
& C_{2}=1=c_{2}, \quad C_{p^{\prime}}=C_{p} \quad \text { for } \quad p^{\prime}=\frac{p}{p-1}, \quad C_{p} \leq 2^{\left|1-\frac{2}{p}\right|}
\end{aligned}
$$

Explicit values:

$$
\begin{aligned}
& C_{3}=\frac{1}{3}(17+7 \sqrt{7})^{1 / 3}=1.0957 \ldots \\
& C_{4}=\left(1+\frac{2}{3} \sqrt{3}\right)^{1 / 4}=1.21156 \ldots
\end{aligned}
$$

T.F. Móri (2009)

$$
\begin{equation*}
c_{p}(\Omega, \mathcal{F}, \mathbf{P}) \leq C_{p} \tag{*}
\end{equation*}
$$

holds for all probability spaces $(\Omega, \mathcal{F}, \mathbf{P})$.

A simple calculation shows that $c_{p}(\Omega, \mathcal{F}, \mathbf{P}) \geq C_{p}$ if there exist $\boldsymbol{A} \in \mathcal{F}$ such that $\mathbf{P}(\boldsymbol{A})=\alpha_{p}$, where α_{p} is a point at which $C_{p}(\alpha)$ attains its global maximum. Obviously, this is satisfied if \mathbf{P} is nonatomic.

Móri's proof of (*) relies on the observation that every zero mean probability distribution on \mathbb{R} is a mixture of distributions concentrated on two points and having zero mean. This allows one to reduce the proof of $(*)$ to showing that

$$
\frac{\left(\mathbf{E}|\xi-\mathbf{E} \xi|^{p}\right)^{1 / p}}{\left(\mathbf{E}|\xi|^{p}\right)^{1 / p}} \leq C_{p}
$$

holds for every r.v. ξ that takes only two values. The latter is an elementary although not an entirely trivial calculation.
G. Lewicki and L. Skrzypek (2016)
$\Omega=\{1, \ldots, n\}$ and \mathbf{P} is the uniform distribution: $\mathbf{P}(k)=\frac{1}{n}, k=1, \ldots, n$.
For $n=3,4$ and for all sufficiently large n, one has

$$
\begin{equation*}
c_{P}=\max \left\{C_{p}\left(\frac{k_{1}}{n}\right), C_{p}\left(\frac{k_{2}}{n}\right)\right\}, \tag{**}
\end{equation*}
$$

where

$$
k_{1}:=\max \left\{k \in \mathbb{N}: \frac{k}{n} \leq \alpha_{p}\right\}, \quad k_{2}:=\min \left\{k \in \mathbb{N}: \alpha_{p} \leq \frac{k}{n}<\frac{1}{2}\right\},
$$

and $\alpha_{\rho} \in(0,1 / 6)$ is the unique point at which $C_{p}(\alpha)$ attains its global maximum in $[0,1 / 2]$.

Lewicki and Skrzypek showed that c_{p} in $(* *)$ tends to Franchetti's c_{p} as $n \rightarrow \infty$ and obtained an alternative proof of Franchetti's result.
$1 \leq c_{p}(\Omega, \mathcal{F}, \mathbf{P}) \leq C_{p} \quad$ for all probability spaces $\quad(\Omega, \mathcal{F}, \mathbf{P})$.

For every $\mathbf{c} \in\left[1, C_{p}\right]$, there exist a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ such that $c_{p}(\Omega, \mathcal{F}, \mathbf{P})=c$. Indeed, let $\Omega=\{-1,1\}, \mathbf{P}(-1)=1-\alpha, \mathbf{P}(1)=\alpha$. Then $c_{p}=C_{p}(\alpha)$, and one can choose α in such a way that $c_{p}=c$.

All the above results remain true for complex valued random variables.

Question: What is the norm of the operator

$$
L^{p}(\mathbb{T}) \ni f \mapsto A_{n} f:=(f-n \text {-th Fejér mean of } f) \in L^{p}(\mathbb{T}) ?
$$

We know that

$$
1 \leq\left\|A_{n}\right\| L^{p} \rightarrow L^{p} \leq 2^{\left|1-\frac{2}{p}\right|}, \quad 1 \leq p \leq \infty, \quad n \in \mathbb{N}
$$

but this is unlikely to be sharp.

Conditional expectation operator

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, \mathcal{G} be a sub- σ-algebra of \mathcal{F}, and let $\mathbf{E}^{\mathcal{G}}=\mathbf{E}(\cdot \mid \mathcal{G})$ be the corresponding conditional expectation operator.
$L^{2}(\Omega, \mathcal{G}, \mathbf{P})$ is a closed linear subspace of $L^{2}(\Omega, \mathcal{F}, \mathbf{P})$ and
$\mathbf{E}^{\mathcal{G}}: L^{2}(\Omega, \mathcal{F}, \mathbf{P}) \rightarrow L^{2}(\Omega, \mathcal{G}, \mathbf{P})$ is the orthogonal projection.

Example

Let $\left\{\Omega_{j}\right\}_{j=1}^{N}, N \in \mathbb{N} \cup\{\infty\}$ be a measurable partition of Ω :

$$
\Omega_{j} \in \mathcal{F}, \quad \Omega=\bigcup_{j=1}^{N} \Omega_{j}, \quad \Omega_{j} \cap \Omega_{k}=\emptyset, j \neq k
$$

and let \mathcal{G} be the σ-algebra generated by $\left\{\Omega_{j}\right\}_{j=1}^{N}$.
Then

$$
\mathbf{E}^{\mathcal{G}} \xi=\sum_{n=1}^{N}\left(\frac{1}{\mathbf{P}\left(\Omega_{n}\right)} \int_{\Omega_{n}} \xi d \mathbf{P}\right) \mathbb{1}_{\Omega_{n}}
$$

$\mathbf{E}^{\mathcal{G}}: L^{p}(\Omega, \mathcal{F}, \mathbf{P}) \rightarrow L^{p}(\Omega, \mathcal{G}, \mathbf{P}), 1 \leq p \leq \infty$ is a contractive projection that preserves constants, i.e.

$$
\begin{aligned}
& \left\|\mathbf{E}^{\mathcal{G}} \xi\right\|_{p} \leq\|\xi\|_{p}, \quad \mathbf{E}^{\mathcal{G}}\left(\mathbf{E}^{\mathcal{G}} \xi\right)=\mathbf{E}^{\mathcal{G}} \xi \quad \text { for all } \quad \xi \in L^{p}(\Omega, \mathcal{F}, \mathbf{P}), \\
& \mathbf{E}^{\mathcal{G}} \mathbb{1}=\mathbb{1},
\end{aligned}
$$

where $\mathbb{1}(\omega)=1$ a.s.
Every contractive projection on $L^{p}(\Omega, \mathcal{F}, \mathbf{P}), p \in[1, \infty) \backslash\{2\}$ that preserves constants is the conditional expectation operator $\mathbf{E}^{\mathcal{G}}$ for a certain sub- σ-algebra $\mathcal{G} \subseteq \mathcal{F}$ (T. Ando, 1966).

Question:

What is the optimal constant $c_{p}=c_{p}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P})$ in the following estimate?

$$
\begin{equation*}
\left\|\xi-\mathbf{E}^{\mathcal{G}} \xi\right\|_{p} \leq c_{p}\|\xi\|_{p}, \quad 1 \leq p \leq \infty \tag{1}
\end{equation*}
$$

In other words, what is the norm of the operator $I-\mathbf{E}^{\mathcal{G}}$,

$$
c_{p}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P})=\left\|I-\mathbf{E}^{\mathcal{G}}\right\|_{L^{p}(\Omega, \mathcal{F}, \mathbf{P}) \rightarrow L^{p}(\Omega, \mathcal{F}, \mathbf{P})}
$$

where I is the identity operator?

Preliminary analysis

$$
\left\|\mathbf{E}^{\mathfrak{G}}\right\|=1 \Longrightarrow\left\|I-\mathbf{E}^{\mathfrak{G}}\right\| \leq 2 .
$$

If $\mathcal{G} \neq \mathcal{F}$, then there exists a r.v. ξ such that $\eta:=\xi-\mathbf{E}^{\mathcal{G}} \xi \neq 0$. Since $\mathbf{E}^{\mathcal{G}} \eta=0$, one has $\left\|\eta-\mathbf{E}^{\mathcal{G}} \eta\right\|_{p}=\|\eta\|_{p}$, and $\left\|I-\mathbf{E}^{\mathcal{G}}\right\| \geq 1$ for all $p \in[1, \infty]$.

For $p=2$, it follows from

$$
\mathbf{E}\left|\xi-\mathbf{E}^{\mathcal{G}} \xi\right|^{2}=\mathbf{E}|\xi|^{2}-\mathbf{E}\left|\mathbf{E}^{\mathcal{G}} \xi\right|^{2} \leq \mathbf{E}|\xi|^{2}
$$

that $c_{2}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P})=1$.

$$
c_{p}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) \leq C_{p}, \quad 1 \leq p \leq \infty .
$$

Remark. In general, the inequality $c_{p}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) \leq c_{p}(\Omega, \mathcal{F}, \mathbf{P})$ does not hold.
Let $1<p<\infty, \alpha_{p} \in(0,1)$ be a point at which $C_{p}(\alpha)$ attains its maximum, $\Omega=\{-1,0,1\}, \mathbf{P}(-1)=\tau\left(1-\alpha_{p}\right), \mathbf{P}(1)=\tau \alpha_{p}$, $\mathbf{P}(0)=1-\tau, 0<\tau<1$, and

$$
\mathcal{G}=\{\emptyset,\{0\},\{-1,1\}, \Omega\} .
$$

Then

$$
\begin{aligned}
& c_{p}(\Omega, \mathcal{F}, \mathbf{P}) \leq 1+\tau^{1 / p}+\tau^{1-1 / p} \rightarrow 1 \quad \text { as } \quad \tau \rightarrow 0 \\
& c_{p}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P})=C_{p}
\end{aligned}
$$

Theorem

For every $p \in[1, \infty]$ and every $c \in\left[1, C_{p}\right]$, there exists a sub- σ-algebra $\mathcal{G} \subset \mathcal{L}$ such that

$$
c_{p}([0,1], \mathcal{L}, \mathcal{G}, \lambda)=c
$$

Remark. If a sub- σ-algebra \mathcal{G} is much smaller than \mathcal{L}, then $c_{p}([0,1], \mathcal{L}, \mathcal{G}, \lambda)=C_{p}$. More precisely, if $(\Omega, \mathcal{F}, \mathbf{P})$ is a separable nonatomic probability space and there exists a r.v. ξ on $(\Omega, \mathcal{F}, \mathbf{P})$, which is independent of a sub- σ-algebra $\mathcal{G} \subset \mathcal{F}$ and has a nontrivial Gaussian distribution, then $c_{p}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) \geq C_{p}, 1 \leq p<\infty$ (A. Dorogovtsev and M. Popov, $2008+$ C. Franchetti, 1992).

Estimates for compact operators

For a Banach space X, let $\mathcal{K}(X)$ denote the set of compact linear operators on X.

Definition

A Banach space X is said to have the bounded compact approximation property (BCAP) if there exists a constant $M \in(0,+\infty)$ such that given any $\varepsilon>0$ and any finite set $F \subset X$, there exists an operator $T \in \mathcal{K}(X)$ such that

$$
\|I-T\| \leq M \quad \text { and } \quad\|x-T x\|<\varepsilon \quad \text { for all } \quad x \in F
$$

We denote by $M(X)$ the infimum of the constants M for which the above conditions are satisfied.

Many authors have the condition $\|T\| \leq M$ in place of $\|I-T\| \leq M$ in the definition of BCAP and of related approximation properties. Let $m(X)$ be the infimum of the constants M for which the conditions in this alternative definition of BCAP are satisfied. It is clear that

$$
m(X)-1 \leq M(X) \leq m(X)+1 .
$$

If one is not interested in sharp constants, then it usually does not matter whether one knows $m(X)$ or $M(X)$.

It is well known that $m\left(L^{p}([0,1])\right)=1,1 \leq p<\infty$. The next result answers the question about the value of $M\left(L^{p}([0,1])\right)$.

Theorem

$$
M\left(L^{p}([0,1])\right)=C_{p}, \quad 1 \leq p<\infty .
$$

The estimate

$$
M\left(L^{p}([0,1])\right) \leq C_{p}
$$

is proved by constructing a suitable conditional expectation operator $T=\mathbf{E}^{\mathcal{G}}$ and using the estimate $c_{p}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) \leq C_{p}$.

The estimate

$$
M\left(L^{p}([0,1])\right) \geq C_{p}
$$

is a corollary of the following result.

Theorem

Let $1 \leq p<\infty$ and $T \in \mathcal{K}\left(L^{p}\right)$. Then

$$
\|I-T\|_{L^{p} \rightarrow L^{p}}+\inf _{\|u\|_{L^{p}=1}}\|(I-T) u\|_{L^{p}} \geq C_{p} .
$$

Theorem

Let $1 \leq p<\infty, T \in \mathcal{K}\left(L^{p}\right)$, and suppose $I-T$ is not invertible (i.e. 1 is an eigenvalue of T). Then

$$
\|I-T\|_{L^{p} \rightarrow L^{p}} \geq C_{p} .
$$

The next result shows how an arbitrary distribution with mean zero can be expressed as a mixture of centered two-point distributions. For any $a \leq$ $0 \leq b$, let $\nu_{a, b}$ denote the unique probability measure on $\{a, b\}$ with mean zero. Clearly, $\nu_{a, b}=\delta_{0}$ when $a b=0$; otherwise,

$$
\nu_{a, b}=\frac{b \delta_{a}-a \delta_{b}}{b-a}, \quad a<0<b
$$

It is easy to verify that ν is a probability kernel from $\mathbb{R}_{-} \times \mathbb{R}_{+}$to \mathbb{R}. For mappings between two measure spaces, measurability is defined in terms of the σ-fields generated by all evaluation maps $\pi_{B}: \mu \mapsto \mu B$, where B is an arbitrary set in the underlying σ-field.

Lemma 12.4 (randomization) For any distribution μ on \mathbb{R} with mean zero, there exists a distribution μ^{*} on $\mathbb{R}_{-} \times \mathbb{R}_{+}$with $\mu=\int \mu^{*}(d x d y) \nu_{x, y}$. Here we may choose μ^{*} to be a measurable function of μ.

Proof (Chung): Let $\mu_{ \pm}$denote the restrictions of μ to $\mathbb{R}_{ \pm} \backslash\{0\}$, define $l(x) \equiv x$, and put $c=\int l d \mu_{+}=-\int l d \mu_{-}$. For any measurable function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$with $f(0)=0$, we get

$$
\begin{aligned}
c \int f d \mu & =\int l d \mu_{+} \int f d \mu_{-}-\int l d \mu_{-} \int f d \mu_{+} \\
& =\iint(y-x) \mu_{-}(d x) \mu_{+}(d y) \int f d \nu_{x, y}
\end{aligned}
$$

and so we may take

$$
\mu^{*}(d x d y)=\mu\{0\} \delta_{0,0}(d x d y)+c^{-1}(y-x) \mu_{-}(d x) \mu_{+}(d y)
$$

The measurability of the mapping $\mu \mapsto \mu^{*}$ is clear by a monotone class argument if we note that $\mu^{*}(A \times B)$ is a measurable function of μ for arbitrary $A, B \in \mathcal{B}(\mathbb{R})$.

