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Prologue: motivation from Analysis

Question from the theory of Hardy spaces / Toeplitz operators:
what is the norm of the backward shift operator?

Equivalently,

what is the norm of the operator

fo— f—217r/7;f<e’9> do

on the Hardy space HP(T)?  Still unknown for p # 2!






What is the norm of the operator
[ i0
fo— f—%/_ﬂf(e )de

on LP(T)? The (not widely!) known answer has led to the
research presented here.



Estimates for centred moments

Notation:

(Q, F,P) — probability space

& — (real valued) random variable (r.v.)
E¢ .= |, &(w) dP(w) — expectation of &,

We will always assume that Q consists of more than one
element and that F is nontrivial, i.e. F # {0,Q}.

Question:

What is the optimal constant ¢, = ¢p(2, F, P) in the following

estimate?

e — E¢|p = (El¢ — EEIP)/P < 6o (EIEPP) /P = Gplé)p, 1< p<oo

1€ = E¢l[oc = ess sup |{(w) — E{[ < Cc ess sup [§(w)] = Coo|€][oc-
weN we



Preliminary analysis

Textbook case: ¢, = 1. Indeed,

El¢ — E¢|? = E(¢ — E¢)® = E€? — (E€)? < E¢2.

If £ is not a constant r.v., then n := ¢ — E¢ # 0, but En = 0.

Hence || — Enl|p = ||n]lp, and |c, > 1 for all p € [1, o0].

Holder's inequality —>  |E¢| < El¢| = ||€]l1 < ||€]l,-
Hence

So,

1€ = E€llp < [I€llp + [[EE[lp = lI€]lp + |EE] < 2[|€]lp-

cp < 2forallpe[1,o0].




Suppose that for every a € (0, 1), there exists A € F such that
P(A) = a.

Let{ :==14. ThenP(( =1)=a, P((=0)=1—q,
El¢| = E( =, E|{ —E{ =2a(1—-a), and

1€ — E]|1
€111

Sending « to 0, one concludes that

Similarly, if £:=14— T1g\4, then
PE=1)=a, PE=-1)=1—-q,

E¢=2a—1, ||¢|lc =1, and ||€ — E€||lcc = max{2a,2(1 — a)}.
Sending « to 1 or to 0, one concludes that

=2(1 — «a).



Putting together

Ci =2 = Cx, c =1, 1< <2 forall pe(1,00),

where the first equality holds if there are A € F with arbitrarily
small positive P(A), e.g., if P is nonatomic.

Cp is the norm of the operator C : LP(Q, P) — LP(Q2,P),

&E— CE:=¢ - E¢.

Applying the Riesz-Thorin interpolation theorem to this
operator, one deduces from the above equalities that

1—2
cp§2’ Pl 1< p <o

(S. Rolewicz, 1990).



Let (2, F,P) = ([0, 1], £, ), where X is the standard Lebesgue
measure on [0, 1] and L is the o-algebra of Lebesgue
measurable subsets of [0, 1]. (Equivalently, one can assume
that Q is a complete separable metric space, 7 = B is the Borel
c-algebra of Q, and P is nonatomic.)

C. Franchetti (1990):

Co = Cp([0,1],L£,\) = max Cp(a) =1 Cp forall 1< p< oo,

where

1
=5

Gola)i= (a2 (1= 1) (0577 + (1 - 0)7")



Ci:= lim Cp=2=c¢y, Cx = lim Cp =2 = Cx,
p—140 p—ro0

_2
02:1 :CZ7 Cp/:Cp fOF p/:pﬁa CpS2‘1 p‘

Explicit values:

1

Cs = (17+7f) —1.0957. ...

3
1/4
< > =1.21156...



T.F. Méri (2009)
Cp(Q,f, P) S Cp (*)

holds for all probability spaces (22, F, P).

A simple calculation shows that c,(2, F,P) > C, if there exist
A € F such that P(A) = ap, where «p is a point at which Cp(«)
attains its global maximum. Obviously, this is satisfied if P is
nonatomic.

Moéri’s proof of (x) relies on the observation that every zero mean probability
distribution on R is a mixture of distributions concentrated on two points and
having zero mean. This allows one to reduce the proof of (x) to showing that

(El¢ — E¢P)'/P
Eepyr =

holds for every r.v. ¢ that takes only two values. The latter is an elementary
although not an entirely trivial calculation.



G. Lewicki and L. Skrzypek (2016)
Q= {1,...,n} and P is the uniform distribution: P(k) = 1, k =1,....n.

For n = 3,4 and for all sufficiently large n, one has

Cp = max {Cp <k7;) , Co <k—;) } ; ()

k . k 1
ki ::max{kGN: Eé&p}, kg::mln{kEN: ap§E<§},

where

and «, € (0,1/6) is the unique point at which C,(«) attains its global
maximum in [0, 1/2].

Lewicki and Skrzypek showed that ¢, in (xx) tends to Franchetti’s ¢, as
n — oo and obtained an alternative proof of Franchetti’s result.



1< (2, 7,P) < C, for all probability spaces (2, F,P).

For every ¢ € [1, Cp), there exist a probability space (2, 7, P)
such that ¢,(Q2, 7,P) = c.

Indeed, let @ = {—1,1}, P(—1) =1 —«, P(1) = a.. Then

¢p = Cp(r), and one can choose « in such a way that ¢, = c.

All the above results remain true for complex valued random
variables.



Question: What is the norm of the operator

LP(T) > f s Anf := (f — n-th Fejér mean of f) € LP(T)?

We know that

_2
1 §||An||Lp_>Lp§2‘1 p)’ 1 Spgooa nGN,

but this is unlikely to be sharp.



Conditional expectation operator

Let (©2, F, P) be a probability space, G be a sub-c-algebra of F,
and let EY = E(-|G) be the corresponding conditional
expectation operator.

L?(Q,G,P) is a closed linear subspace of L?(Q, F,P)
and
EY : [2(Q, F,P) — L2(Q,G,P) is the orthogonal projection.



Let {Qj}j";, N e NU{cc} be a measurable partition of Q:

=

QjE]:, Q= Qj QjﬂQk:(Z),j#k,

Jj=1

and let G be the o-algebra generated by {Qj}j,\i1.
Then

N 1
Ge
== (g [, €P) 1o



EY : LP(Q, F,P) — LP(Q,G,P), 1 < p < oo is a contractive
projection that preserves constants, i.e.

|E%]|, < lléllp, EF (E%) =E% forall ¢eLP(Q,F,P),
E91 =1,

where 1(w) =1 a.s.

Every contractive projection on LP(Q, F,P), p € [1,00) \ {2}

that preserves constants is the conditional expectation operator
EY for a certain sub-o-algebra G C F (T. Ando, 1966).



Question:

What is the optimal constant ¢, = ¢,(€2, 7, G, P) in the following
estimate?

e —E9%]|,, < colléllp, 1< p< oo (1
In other words, what is the norm of the operator /| — EY,
¢p(2, F,G.P) = ||/ - EgHLP(Q,}ZP)HLp(Q,}',P)’

where [ is the identity operator?



Preliminary analysis

e =1 = [Ji- e <2

If G # F, then there exists a r.v. ¢ such that 7 := ¢ — E9¢ # 0.
Since E9n = 0, one has ||y — E9||p = ||n]|p, and |||/ — EY|| > 1
forall p € [1, o0].

For p = 2, it follows from

E|¢ — E9¢|° = E|¢|° — E|[EY¢? < E[¢)?

that | co(Q, 7,G,P) = 1.|




(2, F,G,P)<Cp, 1<p<oo

Remark. In general, the inequality cp(2, F,G,P) < cp(2, F,P)
does not hold.

Let1 < p < o0, ap € (0, 1) be a point at which Cp(«) attains its
maximum, © = {~1,0,1}, P(~1) = 7(1 — ap), P(1) = 7a,
P(0O)=1-7,0<7<1,and

G = {@,{0},{—1,1},9}.
Then

co(QF,P)<147P 4 71-1/P 54 as 70,
co(Q2, F,G,P) = Cp.



For every p € [1,00] and every ¢ € [1, Cp], there exists a
sub-c-algebra G C £ such that

co([0,1],£,G,)) =c.

Remark. If a sub-o-algebra G is much smaller than £, then
co([0,1], £, G, \) = Cp. More precisely, if (2, F,P) is a
separable nonatomic probability space and there exists ar.v. £
on (2, F,P), which is independent of a sub-c-algebra G ¢ F
and has a nontrivial Gaussian distribution, then

co(Q2, F,G,P) > Cp, 1 < p < oo (A. Dorogovtsev and M. Popov,
2008 + C. Franchetti, 1992).



Estimates for compact operators

For a Banach space X, let C(X) denote the set of compact
linear operators on X.

Definition

A Banach space X is said to have the bounded compact
approximation property (BCAP) if there exists a constant
M € (0, +o0) such that given any € > 0 and any finite set
F C X, there exists an operator T € K(X) such that

=T <M and |x—Tx||<e forall xeF.

We denote by M(X) the infimum of the constants M for which
the above conditions are satisfied.




Many authors have the condition || T|| < M in place of
Il — T|| < M in the definition of BCAP and of related
approximation properties. Let m(X) be the infimum of the
constants M for which the conditions in this alternative
definition of BCAP are satisfied. It is clear that

m(X) —1 < M(X) < m(X)+ 1.

If one is not interested in sharp constants, then it usually does
not matter whether one knows m(X) or M(X).

It is well known that m(LP([0,1])) =1, 1 < p < co. The next
result answers the question about the value of M(LP([0, 1])).

M(LP([0,1])) = Cp, 1< p<oco.




The estimate
M(LP([0,1])) < Cp

is proved by constructing a suitable conditional expectation
operator T = EY and using the estimate ¢c,(Q, F,G,P) < Cp.

The estimate
M(LP([0,1])) > Cp

is a corollary of the following result.

Let1 <p<ooand T € K(LP). Then

[ = Tlemsie + inf [|(/ = T)ulle > Cp.
luflp=1




Let1 <p < oo, T € K(LP), and suppose | — T is not invertible
(i.e. 1 is an eigenvalue of T). Then

|l = T|o—1p > Cp.




The next result shows how an arbitrary distribution with mean zero can
be expressed as a mixture of centered two-point distributions. For any a <
0 < b, let v, denote the unique probability measure on {a,b} with mean
zero. Clearly, v,, = 0y when ab = 0; otherwise,
bo, — ad,

b—a ’

It is easy to verify that v is a probability kernel from R_ x R, to R. For

Vap = a<0<b.

mappings between two measure spaces, measurability is defined in terms of
the o-fields generated by all evaluation maps 7 : p — pB, where B is an
arbitrary set in the underlying o-field.

Lemma 12.4 (randomization) For any distribution u on R with mean zero,
there exists a distribution p* on R_ x Ry with p = [ p*(dx dy)v,,. Here we
may choose p* to be a measurable function of .

Proof (Chung): Let p. denote the restrictions of p to Ry \ {0}, define
l(z) = z, and put ¢ = [ldu, = — [ldu_. For any measurable function
f:R— R, with f(0) =0, we get

of ran = [udp. [ rap-— [ip [ rap,

= [ - u @ () [ rv.,,

and so we may take
W (da dy) = p{0}00,0(dx dy) + ¢ (y — @) (dw) . (dy).

The measurability of the mapping p — p* is clear by a monotone class ar-
gument if we note that p*(A x B) is a measurable function of p for arbitrary
A, B € B(R). ]



