Sharp estimates for conditionally centred moments and for compact operators on *L^p* spaces

Eugene Shargorodsky* and Teo Sharia**

* King's College London and Technische Universität Dresden ** Royal Holloway, University of London Question from the theory of Hardy spaces / Toeplitz operators: what is the norm of the backward shift operator?

Equivalently,

what is the norm of the operator

$$f \longmapsto f - \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{i\theta}\right) d\theta$$

on the Hardy space $H^{p}(\mathbb{T})$? Still unknown for $p \neq 2$!

What is the norm of the operator

$$f \longmapsto f - \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{i\theta}\right) d\theta$$

on $L^p(\mathbb{T})$? The (not widely!) known answer has led to the research presented here.

Estimates for centred moments

Notation:

 $(\Omega, \mathcal{F}, \mathbf{P})$ – probability space

 ξ – (real valued) random variable (r.v.)

 $\mathbf{E}\xi := \int_{\Omega} \xi(\omega) \, d\mathbf{P}(\omega) - \text{expectation of } \xi,$

We will always assume that Ω consists of more than one element and that \mathcal{F} is nontrivial, i.e. $\mathcal{F} \neq \{\emptyset, \Omega\}$.

Question:

What is the optimal constant $c_p = c_p(\Omega, \mathcal{F}, \mathbf{P})$ in the following estimate?

$$\begin{aligned} \|\boldsymbol{\xi} - \mathbf{E}\boldsymbol{\xi}\|_{\boldsymbol{p}} &= (\mathbf{E}|\boldsymbol{\xi} - \mathbf{E}\boldsymbol{\xi}|^{\boldsymbol{p}})^{1/\boldsymbol{p}} \leq c_{\boldsymbol{p}} \left(\mathbf{E}|\boldsymbol{\xi}|^{\boldsymbol{p}}\right)^{1/\boldsymbol{p}} = c_{\boldsymbol{p}} \|\boldsymbol{\xi}\|_{\boldsymbol{p}}, \quad 1 \leq \boldsymbol{p} < \infty \\ \|\boldsymbol{\xi} - \mathbf{E}\boldsymbol{\xi}\|_{\infty} &= \operatorname{ess\,sup}_{\omega \in \Omega} |\boldsymbol{\xi}(\omega) - \mathbf{E}\boldsymbol{\xi}| \leq c_{\infty} \operatorname{ess\,sup}_{\omega \in \Omega} |\boldsymbol{\xi}(\omega)| = c_{\infty} \|\boldsymbol{\xi}\|_{\infty}. \end{aligned}$$

Preliminary analysis

Textbook case: $c_2 = 1$. Indeed,

$$\mathbf{E}|\xi - \mathbf{E}\xi|^2 = \mathbf{E}(\xi - \mathbf{E}\xi)^2 = \mathbf{E}\xi^2 - (\mathbf{E}\xi)^2 \le \mathbf{E}\xi^2.$$

If ξ is not a constant r.v., then $\eta := \xi - \mathbf{E}\xi \neq 0$, but $\mathbf{E}\eta = 0$. Hence $\|\eta - \mathbf{E}\eta\|_{p} = \|\eta\|_{p}$, and $c_{p} \ge 1$ for all $p \in [1, \infty]$.

Hölder's inequality $\implies |\mathbf{E}\xi| \le \mathbf{E}|\xi| = \|\xi\|_1 \le \|\xi\|_p$. Hence

$$\|\xi - \mathbf{E}\xi\|_{p} \le \|\xi\|_{p} + \|\mathbf{E}\xi\|_{p} = \|\xi\|_{p} + |\mathbf{E}\xi| \le 2\|\xi\|_{p}.$$

So, $c_p \leq 2$ for all $p \in [1, \infty]$.

Suppose that for every $\alpha \in (0, 1)$, there exists $A \in \mathcal{F}$ such that $\mathbf{P}(A) = \alpha$. Let $\xi := \mathbb{1}_A$. Then $\mathbf{P}(\xi = 1) = \alpha$, $\mathbf{P}(\xi = 0) = 1 - \alpha$, $\mathbf{E}|\xi| = \mathbf{E}\xi = \alpha$, $\mathbf{E}|\xi - \mathbf{E}\xi| = 2\alpha(1 - \alpha)$, and $\frac{\|\xi - \mathbf{E}\xi\|_1}{\|\xi\|_1} = 2(1 - \alpha)$.

Sending α to 0, one concludes that $c_1 = 2$.

Similarly, if $\xi := \mathbb{1}_A - \mathbb{1}_{\Omega \setminus A}$, then $\mathbf{P}(\xi = 1) = \alpha$, $\mathbf{P}(\xi = -1) = 1 - \alpha$, $\mathbf{E}\xi = 2\alpha - 1$, $\|\xi\|_{\infty} = 1$, and $\|\xi - \mathbf{E}\xi\|_{\infty} = \max\{2\alpha, 2(1 - \alpha)\}$. Sending α to 1 or to 0, one concludes that $c_{\infty} = 2$. $c_1=2=c_\infty, \qquad c_2=1, \qquad 1\leq c_p\leq 2 \quad \text{for all} \quad p\in(1,\infty),$

where the first equality holds if there are $A \in \mathcal{F}$ with arbitrarily small positive $\mathbf{P}(A)$, e.g., if **P** is nonatomic.

 c_{ρ} is the norm of the operator $\mathbf{C}: L^{\rho}(\Omega, \mathbf{P}) \rightarrow L^{\rho}(\Omega, \mathbf{P})$,

$$\xi \mapsto \mathbf{C}\xi := \xi - \mathbf{E}\xi.$$

Applying the Riesz-Thorin interpolation theorem to this operator, one deduces from the above equalities that

$$c_{oldsymbol{
ho}} \leq 2^{\left|1-rac{2}{
ho}
ight|}, \quad 1 < oldsymbol{
ho} < \infty$$

(S. Rolewicz, 1990).

Let $(\Omega, \mathcal{F}, \mathbf{P}) = ([0, 1], \mathcal{L}, \lambda)$, where λ is the standard Lebesgue measure on [0, 1] and \mathcal{L} is the σ -algebra of Lebesgue measurable subsets of [0, 1]. (Equivalently, one can assume that Ω is a complete separable metric space, $\mathcal{F} = \mathcal{B}$ is the Borel σ -algebra of Ω , and **P** is nonatomic.)

C. Franchetti (1990):

$$c_p = c_p([0, 1], \mathcal{L}, \lambda) = \max_{0 < \alpha < 1} C_p(\alpha) =: C_p \text{ for all } 1 < p < \infty,$$

where

$$C_{p}(\alpha) := \left(\alpha^{p-1} + (1-\alpha)^{p-1}\right)^{\frac{1}{p}} \left(\alpha^{\frac{1}{p-1}} + (1-\alpha)^{\frac{1}{p-1}}\right)^{1-\frac{1}{p}}$$

$$\begin{split} & C_1 := \lim_{p \to 1+0} C_p = 2 = c_1, \qquad C_{\infty} := \lim_{p \to \infty} C_p = 2 = c_{\infty}, \\ & C_2 = 1 = c_2, \qquad C_{p'} = C_p \quad \text{for} \quad p' = \frac{p}{p-1}, \qquad C_p \le 2^{\left|1 - \frac{2}{p}\right|} \end{split}$$

Explicit values:

$$C_3 = \frac{1}{3} \left(17 + 7\sqrt{7} \right)^{1/3} = 1.0957...,$$
$$C_4 = \left(1 + \frac{2}{3}\sqrt{3} \right)^{1/4} = 1.21156...$$

T.F. Móri (2009)

$$c_{
ho}(\Omega, \mathcal{F}, \mathbf{P}) \leq C_{
ho}$$
 (*)

holds for all probability spaces $(\Omega, \mathcal{F}, \mathbf{P})$.

A simple calculation shows that $c_p(\Omega, \mathcal{F}, \mathbf{P}) \ge C_p$ if there exist $A \in \mathcal{F}$ such that $\mathbf{P}(A) = \alpha_p$, where α_p is a point at which $C_p(\alpha)$ attains its global maximum. Obviously, this is satisfied if \mathbf{P} is nonatomic.

Móri's proof of (*) relies on the observation that every zero mean probability distribution on \mathbb{R} is a mixture of distributions concentrated on two points and having zero mean. This allows one to reduce the proof of (*) to showing that

$$rac{\left(\mathsf{E}|arepsilon-\mathsf{E}arepsilon|^{
ho}
ight)^{1/
ho}}{\left(\mathsf{E}|arepsilon|^{
ho}
ight)^{1/
ho}}\leq C_{
ho},$$

holds for every r.v. ξ that takes only two values. The latter is an elementary although not an entirely trivial calculation.

G. Lewicki and L. Skrzypek (2016)

 $\Omega = \{1, \dots, n\}$ and **P** is the uniform distribution: $\mathbf{P}(k) = \frac{1}{n}, k = 1, \dots, n$.

For n = 3, 4 and for all sufficiently large n, one has

$$C_{p} = \max\left\{C_{p}\left(\frac{k_{1}}{n}\right), C_{p}\left(\frac{k_{2}}{n}\right)\right\},$$
 (**)

where

$$k_1 := \max\left\{k \in \mathbb{N}: \ \frac{k}{n} \le \alpha_p\right\}, \quad k_2 := \min\left\{k \in \mathbb{N}: \ \alpha_p \le \frac{k}{n} < \frac{1}{2}\right\},$$

and $\alpha_p \in (0, 1/6)$ is the unique point at which $C_p(\alpha)$ attains its global maximum in [0, 1/2].

Lewicki and Skrzypek showed that c_p in (**) tends to Franchetti's c_p as $n \to \infty$ and obtained an alternative proof of Franchetti's result.

 $1 \leq c_{\rho}(\Omega, \mathcal{F}, \mathbf{P}) \leq C_{\rho}$ for all probability spaces $(\Omega, \mathcal{F}, \mathbf{P})$.

For every $c \in [1, C_p]$, there exist a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ such that $c_p(\Omega, \mathcal{F}, \mathbf{P}) = c$. Indeed, let $\Omega = \{-1, 1\}$, $\mathbf{P}(-1) = 1 - \alpha$, $\mathbf{P}(1) = \alpha$. Then $c_p = C_p(\alpha)$, and one can choose α in such a way that $c_p = c$.

All the above results remain true for complex valued random variables.

Question: What is the norm of the operator

$$L^{p}(\mathbb{T}) \ni f \mapsto A_{n}f := (f - n \text{-th Fejér mean of } f) \in L^{p}(\mathbb{T})$$
?

We know that

$$1 \leq \|A_n\|_{L^p \to L^p} \leq 2^{\left|1-\frac{2}{p}\right|}, \quad 1 \leq p \leq \infty, \quad n \in \mathbb{N},$$

but this is unlikely to be sharp.

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, \mathcal{G} be a sub- σ -algebra of \mathcal{F} , and let $\mathbf{E}^{\mathcal{G}} = \mathbf{E}(\cdot | \mathcal{G})$ be the corresponding conditional expectation operator.

 $L^2(\Omega, \mathcal{G}, \mathbf{P})$ is a closed linear subspace of $L^2(\Omega, \mathcal{F}, \mathbf{P})$ and $\mathbf{E}^{\mathcal{G}} : L^2(\Omega, \mathcal{F}, \mathbf{P}) \to L^2(\Omega, \mathcal{G}, \mathbf{P})$ is the orthogonal projection.

Example

Let $\{\Omega_j\}_{j=1}^N, N \in \mathbb{N} \cup \{\infty\}$ be a measurable partition of Ω :

$$\Omega_j \in \mathcal{F}, \qquad \Omega = \bigcup_{j=1}^N \Omega_j, \qquad \Omega_j \cap \Omega_k = \emptyset, \ j \neq k,$$

and let \mathcal{G} be the σ -algebra generated by $\{\Omega_j\}_{j=1}^N$.

Then

$$\mathbf{E}^{\mathcal{G}}\xi = \sum_{n=1}^{N} \left(\frac{1}{\mathbf{P}(\Omega_n)} \int_{\Omega_n} \xi \, d\mathbf{P} \right) \mathbb{1}_{\Omega_n}.$$

 $\mathbf{E}^{\mathcal{G}}: L^{p}(\Omega, \mathcal{F}, \mathbf{P}) \to L^{p}(\Omega, \mathcal{G}, \mathbf{P}), 1 \leq p \leq \infty$ is a contractive projection that preserves constants, i.e.

$$\begin{split} \left\| \mathbf{E}^{\mathcal{G}} \xi \right\|_{\boldsymbol{\rho}} &\leq \| \xi \|_{\boldsymbol{\rho}}, \quad \mathbf{E}^{\mathcal{G}} \left(\mathbf{E}^{\mathcal{G}} \xi \right) = \mathbf{E}^{\mathcal{G}} \xi \quad \text{for all} \quad \xi \in L^{\boldsymbol{\rho}}(\Omega, \mathcal{F}, \mathbf{P}), \\ \mathbf{E}^{\mathcal{G}} \mathbbm{1} &= \mathbbm{1}, \end{split}$$

where $\mathbb{1}(\omega) = 1$ a.s.

Every contractive projection on $L^{p}(\Omega, \mathcal{F}, \mathbf{P})$, $p \in [1, \infty) \setminus \{2\}$ that preserves constants is the conditional expectation operator $\mathbf{E}^{\mathcal{G}}$ for a certain sub- σ -algebra $\mathcal{G} \subseteq \mathcal{F}$ (T. Ando, 1966).

Question:

What is the optimal constant $c_p = c_p(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P})$ in the following estimate?

$$\left\|\boldsymbol{\xi} - \mathbf{E}^{\mathcal{G}}\boldsymbol{\xi}\right\|_{\boldsymbol{p}} \le c_{\boldsymbol{p}} \|\boldsymbol{\xi}\|_{\boldsymbol{p}}, \quad 1 \le \boldsymbol{p} \le \infty.$$
 (1)

In other words, what is the norm of the operator $I - \mathbf{E}^{\mathcal{G}}$,

$$c_{\rho}(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) = \left\| I - \mathbf{E}^{\mathcal{G}} \right\|_{L^{p}(\Omega, \mathcal{F}, \mathbf{P}) \to L^{p}(\Omega, \mathcal{F}, \mathbf{P})},$$

where I is the identity operator?

Preliminary analysis

$$\left\|\mathbf{E}^{\mathcal{G}}\right\| = 1 \implies \left\|\mathbf{I} - \mathbf{E}^{\mathcal{G}}\right\| \le 2.$$

If $\mathcal{G} \neq \mathcal{F}$, then there exists a r.v. ξ such that $\eta := \xi - \mathbf{E}^{\mathcal{G}} \xi \neq \mathbf{0}$. Since $\mathbf{E}^{\mathcal{G}} \eta = \mathbf{0}$, one has $\|\eta - \mathbf{E}^{\mathcal{G}} \eta\|_{p} = \|\eta\|_{p}$, and $\|I - \mathbf{E}^{\mathcal{G}}\| \ge 1$ for all $p \in [1, \infty]$.

For p = 2, it follows from

$$\begin{split} \textbf{E}|\xi-\textbf{E}^{\mathcal{G}}\xi|^2 &= \textbf{E}|\xi|^2-\textbf{E}|\textbf{E}^{\mathcal{G}}\xi|^2 \leq \textbf{E}|\xi|^2 \\ \text{that} \ \boxed{\textbf{C}_2(\Omega,\mathcal{F},\mathcal{G},\textbf{P})=1.} \end{split}$$

$c_{p}(\Omega,\mathcal{F},\mathcal{G},\mathbf{P})\leq C_{p}, \quad 1\leq p\leq\infty.$

Remark. In general, the inequality $c_p(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) \leq c_p(\Omega, \mathcal{F}, \mathbf{P})$ does not hold.

Let $1 , <math>\alpha_p \in (0, 1)$ be a point at which $C_p(\alpha)$ attains its maximum, $\Omega = \{-1, 0, 1\}$, $\mathbf{P}(-1) = \tau(1 - \alpha_p)$, $\mathbf{P}(1) = \tau \alpha_p$, $\mathbf{P}(0) = 1 - \tau$, $0 < \tau < 1$, and

$$\mathcal{G} = \Big\{ \emptyset, \{\mathbf{0}\}, \{-1, 1\}, \Omega \Big\}.$$

Then

$$egin{aligned} & m{c}_{m{
ho}}(\Omega,\mathcal{F},\mathbf{P}) \leq 1 + au^{1/
ho} + au^{1-1/
ho} o 1 & ext{as} \quad au o 0, \ & m{c}_{m{
ho}}(\Omega,\mathcal{F},\mathcal{G},\mathbf{P}) = m{C}_{m{
ho}}. \end{aligned}$$

Theorem

For every $p \in [1, \infty]$ and every $c \in [1, C_p]$, there exists a sub- σ -algebra $\mathcal{G} \subset \mathcal{L}$ such that

 $c_{p}([0,1],\mathcal{L},\mathcal{G},\lambda) = c.$

Remark. If a sub- σ -algebra \mathcal{G} is much smaller than \mathcal{L} , then $c_p([0, 1], \mathcal{L}, \mathcal{G}, \lambda) = C_p$. More precisely, if $(\Omega, \mathcal{F}, \mathbf{P})$ is a separable nonatomic probability space and there exists a r.v. ξ on $(\Omega, \mathcal{F}, \mathbf{P})$, which is independent of a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$ and has a nontrivial Gaussian distribution, then $c_p(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) \geq C_p$, $1 \leq p < \infty$ (A. Dorogovtsev and M. Popov, 2008 + C. Franchetti, 1992).

For a Banach space X, let $\mathcal{K}(X)$ denote the set of compact linear operators on X.

Definition

A Banach space *X* is said to have the bounded compact approximation property (BCAP) if there exists a constant $M \in (0, +\infty)$ such that given any $\varepsilon > 0$ and any finite set $F \subset X$, there exists an operator $T \in \mathcal{K}(X)$ such that

$$\|I - T\| \le M$$
 and $\|x - Tx\| < \varepsilon$ for all $x \in F$.

We denote by M(X) the infimum of the constants M for which the above conditions are satisfied.

Many authors have the condition $||T|| \le M$ in place of $||I - T|| \le M$ in the definition of BCAP and of related approximation properties. Let m(X) be the infimum of the constants M for which the conditions in this alternative definition of BCAP are satisfied. It is clear that

$$m(X)-1 \leq M(X) \leq m(X)+1.$$

If one is not interested in sharp constants, then it usually does not matter whether one knows m(X) or M(X).

It is well known that $m(L^{p}([0, 1])) = 1, 1 \le p < \infty$. The next result answers the question about the value of $M(L^{p}([0, 1]))$.

Theorem

$$M(L^{p}([0,1])) = C_{p}, \quad 1 \leq p < \infty.$$

The estimate

$$M(L^p([0,1])) \leq C_p$$

is proved by constructing a suitable conditional expectation operator $T = \mathbf{E}^{\mathcal{G}}$ and using the estimate $c_p(\Omega, \mathcal{F}, \mathcal{G}, \mathbf{P}) \leq C_p$.

The estimate

$$M(L^p([0,1])) \geq C_p$$

is a corollary of the following result.

Theorem

Let $1 \leq p < \infty$ and $T \in \mathcal{K}(L^p)$. Then

$$\|I - T\|_{L^p \to L^p} + \inf_{\|u\|_{L^p} = 1} \|(I - T)u\|_{L^p} \ge C_p.$$

Theorem

Let $1 \le p < \infty$, $T \in \mathcal{K}(L^p)$, and suppose I - T is not invertible (i.e. 1 is an eigenvalue of *T*). Then

$$\|I-T\|_{L^p\to L^p}\geq C_p.$$

The next result shows how an arbitrary distribution with mean zero can be expressed as a mixture of centered two-point distributions. For any $a \leq 0 \leq b$, let $\nu_{a,b}$ denote the unique probability measure on $\{a, b\}$ with mean zero. Clearly, $\nu_{a,b} = \delta_0$ when ab = 0; otherwise,

$$\nu_{a,b} = \frac{b\delta_a - a\delta_b}{b - a}, \quad a < 0 < b.$$

It is easy to verify that ν is a probability kernel from $\mathbb{R}_- \times \mathbb{R}_+$ to \mathbb{R} . For mappings between two measure spaces, measurability is defined in terms of the σ -fields generated by all evaluation maps $\pi_B : \mu \mapsto \mu B$, where B is an arbitrary set in the underlying σ -field.

Lemma 12.4 (randomization) For any distribution μ on \mathbb{R} with mean zero, there exists a distribution μ^* on $\mathbb{R}_- \times \mathbb{R}_+$ with $\mu = \int \mu^* (dx \, dy) \nu_{x,y}$. Here we may choose μ^* to be a measurable function of μ .

Proof (Chung): Let μ_{\pm} denote the restrictions of μ to $\mathbb{R}_{\pm} \setminus \{0\}$, define $l(x) \equiv x$, and put $c = \int ld\mu_{+} = -\int ld\mu_{-}$. For any measurable function $f: \mathbb{R} \to \mathbb{R}_{+}$ with f(0) = 0, we get

$$c\int f d\mu = \int l d\mu_{+} \int f d\mu_{-} - \int l d\mu_{-} \int f d\mu_{+}$$
$$= \int \int (y-x)\mu_{-}(dx)\mu_{+}(dy) \int f d\nu_{x,y},$$

and so we may take

$$\mu^*(dx\,dy) = \mu\{0\}\delta_{0,0}(dx\,dy) + c^{-1}(y-x)\mu_-(dx)\mu_+(dy).$$

The measurability of the mapping $\mu \mapsto \mu^*$ is clear by a monotone class argument if we note that $\mu^*(A \times B)$ is a measurable function of μ for arbitrary $A, B \in \mathcal{B}(\mathbb{R})$.